top of page

Nanoimprint Technology (NIL)

What is NIL ? 

Nanoimprint lithography is a method of fabricating nanometer scale patterns. It is a simple nanolithography process with low cost, high throughput and high resolution. It creates patterns by mechanical deformation of imprint resist and subsequent processes. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting. Adhesion between the resist and the template is controlled to allow proper release.

 

 

What can NIL do ? 

Nanoimprint lithography has been used to fabricate devices for electrical, optical, photonic and biological applications. For electronics devices, NIL has been used to fabricate MOSFET, O-TFT, single electron memory. For optics and photonics, intensive study has been conducted in fabrication of subwavelength resonant grating filter, polarizers, waveplate, anti-reflective structures, integrated photonics circuit and plasmonic devices by NIL. sub-10 nm nanofluidic channels had been fabricated using NIL and used in DNA strenching experiment. Currently, NIL is used to shrink the size of biomolecular sorting device an order of magnitude smaller and more efficient.

 

 

What is the advantages ? 

A key benefit of nanoimprint lithography is its sheer simplicity. The single greatest cost associated with chip fabrication is the optical lithography tool used to print the circuit patterns. Optical lithography requires high powered excimer lasers and immense stacks of precision ground lens elements to achieve nanometer scale resolution. There is no need for complex optics or high-energy radiation sources with a nanoimprint tool. There is no need for finely tailored photoresists designed for both resolution and sensitivity at a given wavelength. The simplified requirements of the technology lead to its low cost.

 

Imprint lithography is inherently a three-dimensional patterning process. Imprint molds can be fabricated with multiple layers of topography stacked vertically. Resulting imprints replicate both layers with a single imprint step, which allows chip manufactures to reduce chip fabrication costs and improve product throughput. As mentioned above, the imprint material does not need to be finely tuned for high resolution and sensitivity. A broader range of materials with varying properties are available for use with imprint lithography. The increased material variability gives chemists the freedom to design new functional materials rather than sacrificial etch resistant polymers. A functional material may be imprinted directly to form a layer in a chip with no need for pattern transfer into underlying materials. The successful implementation of a functional imprint material would result in significant cost reductions and increased throughput by eliminating many difficult chip fabrication processing steps

Email Us

Contact us for further information 

香港億嘉精密科技有限公司

香港九龍觀塘開源道49號創貿廣場2305室

電話:(852) 90150670

 

Econium Precision Technologies Co. Ltd.

Address: Unit 2305, Apec Plaza, 49 Hoi Yuen Road Kwun Tong, Hong Kong

Tel : (852) 90150670

Email: info@econiumtech.com

​© Copyright 2014  Econium Precision Technologies Co. Ltd. 

Contact Information

The headquarter in Hong Kong

Your details were sent successfully!

bottom of page